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It is chuacteristic of stationary dynamic problems of elastic theory, to have qualitative 

changes when the velocity of motion of the distrnrbing source becomes equal to or exceeds 

the velocity of propagation of Raylaigh surface waves. 

As an example, we shall consider the plane problem of the wedging of an infinite elastic 

body by a thin semi-infinite wedge [l]. A crack is formed in front of the wedge. Its surface 

is stress free everywhere, except in a small end region, where cohesive forces act between 

opposite boundaries. The cohesive forces ensure a smooth closing of crack boundaries and 

finite stresses at its end. The length of the crack depends on the velocity of the wedge and 

its shape, as well as on the material properties. It was shown [l], that as the wedge velo- 

city approaches the Rayleigh velocity, the crack length tends to zero and the stresses in 

the body become infinite. It follows, that no crack can form with wedging at a velocity 

higher than Rayleigh’s. 

Other examples are the stationary problems of moving loads and dies along the bound- 

ary of a halfspace. 

The investigation described in [I] f o available solutions [2-71 showed, that if 

the velocity of the load or die approaches the Rayleigh velocity, the stresses and displace- 

ments at all points in the body become infinite. This was also observed in [g]. With the 

transition above Rayleigh’s velocity there is a change of sign in the stresses and displace- 

ments. In the stationary problem of moving loads, this leads, in particular, to a very unusual 

change in the form of the free surface. With velocities above Rayleigh’s, the material, under 

a compressive load, is found to swell. 

In the present paper an explanation is offered of the above-mentioned resonance pheno- 

mena in stationary contact problems. Thus, we consider first the nonstationary problem of 

the half-plane on the surface of which, beginning at some time, a load, distributed along 

the semi-infinite side of the boundary, moves uniformly with a velocity below that of sound. 
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In any bounded region of the space, moving together with the front end of the loading, the 

solution of this problem tends, with time, to the corresponding stationary solution, and 

enables it to be investigated. 

In the following, we consider a homogeneous, isotropic elastic medium under conditiona 

of plane deformation. 

1. Consider an elastic half-plane yQ0, free of stress. At a time t = 0, let a normal 

compressive load of uniform intensity q be applied to the segment x ( 0 of the boundary 

y = 0. This load begins to move with constant velocity V in the positive x direction. The 

load velocity is considered to be lower than the velocity of the slow, transverse, sound 

waves. 

Thus, we see4 a solution of the dynamic equations of the theory of elasticity with 

zero initial and the following boundary conditions (H (0 is Heavyside’s function) : 

uu = -qH(Vt-LIT), T&/=0 for y = 0 

The formulated problem can be solved by the method used in [9, IO]. 

(1.1) 

It is known (see, for example, [3,6]) that the equations of the dynamic elasticity 

theory are satisfied, if the stress components cr 
Y 

,a% and T 
xY 

and displacements u and v 

are equal to 

Here 4, and I/J are the scalar and vector potentials, which are the solutions of the 

wave equations 

Here p is the material density and e, and cr are the velocities of longitudinal and 

transverse waves, respectively. 

A Laplace time transformation of the wave equations for the potentials and the 

boundary conditions, using the zero initial conditions, leads to 

na, z P2Q, 
Cl2 

n’y = P’u’ 
Cz2 

Tx,J = 0, 2, = - _4 exp - PH (4 

P V 
for y = 0 

(1.3) 

Here cb, v, 2 and T denote the Laplace representation of the corresponding quantities 



610 R. V. Gol’dshtein 

and p is the parameter of the transformation. 

As in [9, lO],we seek the solution of (1.3) in the form 

(1.4) 

@ = \ p (5) exp (@lx -I P 1/L2 i- c~-~Y) d5 
L 

-a3 

00 

Y= s Q (5) exp (i&x + P my) d< 
-co 

Here the integration is performed on the real axis in the plane [, and P (0 and Q (6) 

are functiona found from the boundary conditions (1.3). 

We construct cuts, in the rplane, along the imaginary axis from point ($;I) and 

(- icJ to ($ ioe) and (- ice) , respectively, and determine the branches of the 

(P -f cl;V roots using the condition dl = 1. Also the exponential multipliers in 

integrals (1.4) will die out for y f 0. 

From the representation (1.4) and relations (1.2) and (1.3). we have the following 

integral equations for P (5) and Q (4) 

Co 

s 
.V’ (6) 2iC 1/C.” 9 cIea - Q (5) (2P -P c~-~)I exp (ip5x) df = 0 (1.5) 

-co 

co 

s 
IP (5) (2P + ore2) -f Q (f) 2i5 1/C” f c~-~I exp (ipcx) d5 = 

-00 (1.6) 

K 

= p9 exp 

- pxH (x) 
V (K= 3) 

Assuming 

p (6) = (X2 -J- cz-2) R (6), Q (5) = 2i5 v/5* + Q’ R (6) (1.7) 

we satisfy equation (1.5) identically, and from (1.6) we get an equation for the determina- 

tion of the new unknown function R (0 

Here 

00 . 
1 

--co 

II (5) F, (5) exp (ipcx) dc = $exp - ““v” (x) 
(1.8) 

F, (5) = (X2 + c, -92 - 452 V(52 + s-2) (L2 + cz-2) 

is Rayleigh’s function. Its only aeros will be 5 = f iVR-t, where VR is the velocity of 

the surface Rayleigh waves. 
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Closing the contour of integration in (13) for x > 0 and x <0 in the upper and lower 

halves of the 5 plane,respectively, we note that for x > 0 the equation is satisfied if 

KL+ (5) 
R (5) FR (0 = ‘nipYL+(iV-l)(l;-_iV-l) 

and for x < 0 if 

KL- (5) 
R (5) FR (5) = - 2nip3L_ (- it) (5 + i&) 

(1.9) 

(E -f 0) 
(1.10) 

Here L+C() and L_ (4) are analytic functions without any zeros or singularities in 

the upper and lower half-plane, respectively. On the real axis we have 

Xt (8 = && (E + i&j = - p;--IyE) (E- G-l) = x_ (E;) (1.11) 

Thus, X+(r) is the analytic continuation of X_(l) in the upper half-plane. Therefore 

X_(r) is a function analytic at every point of the finite plane, i.e., an entire function. 

For the convergence of the integrals (l-4), at y = 0, representing @ and v’, we need 

X_ (5) = Aj -!- U. Constants A and B are determined from the known values X_ (- i&) 

and X- (Wl). Finally we have X_ (5) =- i (I’-’ $ F) and 

(1.12) 

Xl (252 + cz-?) 

P(5) = 2nP3 (5 + ie) (5 - W1) F, (5)’ 
iK,c v/5’ + C~-~ 

v (‘) = np3 (5 + ie) (5 - ib’-l) F, (t) 

where K, = (K / V). From (1.12) it follows that P (b) - ce2, and Q (5) z c-2 when 

/ 5 13 cc, i.e., the integrals (1.4) converge everywhere, except at the point x = 0. y - 0. 

Substituting the above expressions for P (0 and Q (5) into (1.4) and using the in- 

version theorem, we find the potentials 4 and $. 

In the following we will need the expressions for x > 0 of the vertical displacement 

v and one of the stress components, for example ox. The required relations are 

( v1 (u) = J, (u) + J, (u) -t- J, (u)) t1*13) 
00 

(1.14) 

Here 
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IV, (5) = - 
K1 (252 f ~-2) 1/52 + cl-Z 

Nz (rl) = 
KIT V/t12 + CI+ 

2ng (5 - iv-l) F, (5) ’ n (q - ii’-‘) F, (rl) 

f (4 = 1 for cl-1 32 - y fc2-z - cl_2 < u < c&, f (u) = 0 for other u 

gj+ 1 for %<%I, c1 p (;)=o for;<% ‘g 

The expraasion for 0, in equation (1.14), for ox, is obtained from the equation of 

V,(U) by substituting the functions N1 and N1 with functions of the same parameters MI 

and MI, where 

iJfl(5) = 
Q (252 + G-2) (Zf” + 2c1-2 - cz-2) 

2nV5 (5 - iv-‘) F, (5) 

M, (q) = - 
2qq y’(q2 + c1-2) (q2 + C2--2) 

nV (q - iv-‘) F, (q) 

(1.15) 

Equations for the remaining components of the stress and displacement can be written 

in an analogous fashion. 

Next, we shall consider the interrelation of the above solution 

problem and the corresponding stationary problem. According to [3, 

solution the stress ox at any ooint of the half-plane is given by 

of the nonstationary 

I], in the stationary 

ax=5 I3 2---arctan-% -C + 
[ i ‘) i 

XI 

hy -arc tan G? )1 
(1.16) 

Here x ‘and y ‘determine the position of the point in the system of coordinates con- 

nected to the front end of the uniformly moving loading and the coefficients A, B and C 

are, respectively, equal to 

A = vcq/-- &$?z’- (1 -q, B = (I_ f) (If &) 

c:1/1--m'1/1-~)m2, m >- -IL 
c2 ’ 

k12 L= 1 - $, k,2 = 1 __ $ 

For theuniform motion of the loading with the Rayleigh velocity, the coefficient A 

becomes equal to zero and changes sign as the velocity exceeds the Rayleigh one. This, 

in particular, means that when V = VR the stress or becomes infinite at all points in the 

body, The same happens to all the other components of stress and displacement. 
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In other words, when the load moves with the Rayleigh velocity, a stationary distribu- 

tion of stress and displacement in the body is not possible. If, however, the load velocity 

is different from Rayleigh’s, a stationary distribotion exists. 

2. We shall consider the formulation of the stationary solution in the nonstationary 

problem, discussed in section 1, of the moving load, distributed along the semi-infinite 

interval. This will explain the reason for the nonexistence of the stationary solution when 

the loads move with the Rayleigh velocity. Using the relations of section I, we shall in- 

vestigate the change in the stress distribution in an arbitrary fixed neighborhood of the 

front end of the load. Assume the front end of the load to be the beginning of the moving 

syetem of coordinates x ‘and y ‘: z = 2’ f v1, y’ = I/. 

Consider, for large values of t, the expressions (1.14) and (1.15) for ox at an arbitrary 

point, stationary with respect to the front end of the load (i.e., fixed x’and y ‘). The form 

of all three components is similar. We shall consider the derivation of one of them. We 

have 

L= 

C& 

since 5, (ctr) = c_ (ctr). For large r 

(2.21 

i.e. c+ (t) + (i / v) as I + OO. But with r) = (i/v) the denominator of the fonction MI (T)), 

under the integral, has either a zero of order one, if V f VR, or a zero of order two, when 

V = VR. Therefore we shall split the integral (2.1) into two, isolating the pole 

where 

Ml” (iv-‘) = - z$ (-- 2l7-2 + Q) (- 2v-2 + 25-Z - cz_2) 

It can be shown that L, = 0 (1 / t). Th erefore we only need to calculate I!,,. 

In the first case, when the load velocity V does not coincide with the Rayleigh 

velocity VR, the quantity L, has a finite limit. The results of calculating the remaining 

components of the expression for ox are the same. Thus, we obtain that with V f VR the 

stress ox in the vicinity of the front end of the load tends, with time, to a finite limit, 

agreeing with the hnown [3,1I stationary solution (1.161. 

In the second case when the load moves with the Rayleigh velocity (V = V,), cal- 

culations show that tl % at where u = u (V,, cl, cl, q, x’, 7’). Calculating the behavior 

of the remaining parameters in the expression for ux, we get, with coordinates fixed in the 

moving system 
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x (- 2V,-a + cz-2) (_ 2!1’, -2 .+. &-” _ Cz-Z) ‘tv’,-2 (i’R-2 _ cz-2) 

(r’)Z vR-2 -(y’)” cl-” - (r’)2 I’,-* - (y’)r c,-r t + O (1) 

((V = (Z’lr + (Y’l? 

It can thus be seen, that the stresses in an arbitrary fixed neighborhood of the front end 

of the load, moving with the Rayleigh velocity, increase asymptotically proportional to 

time. In other words, the motion of the medium in the neighborhood of the load end will 

never become steady. Therefore, the solution of the corresponding stationary problem 

loses its meaning when the load moves with the Rayleigh velocity. 

The increase in the stresses in the neighborhood of the front end of the load, moving 

with Rayleigh velocity, takes place because, in this case, the energy transmitted by the 

surface waves accumulates in this region. 

Actually, the motion of the semi-infinite loading can be represented as a successive 

addition to its front end of small overloads, the locations and times of application of which 

depend on the motion of the loading. Each such overload gives rise, at the instant of its 

application, to longitudinal, transverse and surface waves. By assumption, the velocity 

of the front end of the loading is smaller than the velocity of propagation of the transverse, 

and therefore also of the longitudinal waves. Therefore, with time, the fronts of the longi- 

tudinal and transverse waves approach infinity relative to an arbitrary fixed neighborhood 

of the front end of the load. 

With velocities lower or higher than the Rayleigh velocity, the same happens with the 

sarface waves. Finally, in the neighborhood of the front end of the load an equilibrium will 

be reached between the inflow and outflow of energy. 

This picture will change if the load is moving exactly with the Rayleigh velocity. In 

this case, the surface waves, arising at the front end of the load at different times and 

propagating in the direction of its motion, will have a common front. This front moves 

together with the front end of the load. Thus, in the neighborhood of the front end of the 

load a superposition of surface waves in the same phase occurs. As a result, the energy 

transmitted by the surface waves accumulates in the vicinity of the front end of the load. 

This brings about the increase in stress. 

The phenomenon described is analogous to resonance in the usual vibrating systems 

and is caused by the velocity of the disturbing source being equal to the velocity of pro- 

pagation of the internal waves of the elastic half-plane, i.e., the surface Rayleigh waves. 

3. In the stationary solntion, as can be seen from (1.16). the stress is of opposite sign 

for load velocities below and above the Rayleigh velocity [l]. The same happens to the 
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displacements [l]. In particular, the shape of the free surface changes. Contrary to the 

usual concepts, under a stationary motion of a compressive loading moving with a velocity 

above Rayleigh’s, the material under the load is found to swell. Also, on the other hand, 

if the loading is tensile, the material contracts. 

For an explanation of this phenomenon, we shall again turn to the nonstationary 

problem. Based on (1.13). we have the following expression for the vertical displacement 

v of the surface point fy = 0, z > 0) 

t T . 
v= s s [w, (4 + w2 (41 cut (3.1) 

c,-1.X c,-1.X 

Wl (u) = - & ($ - FI- lJr (- 2 J$- + -$)” (9 - +.-’ x 

x I(- 2 ‘5 + +)’ + lG $ (‘$ - &) (+ - $)I-’ for Cl-’ Z \c u < cz-& 

I 
WI (u) = 0 (u > c2_12), 

1 ‘It u 
U’2 (u) = - && ($ - CT) (; - + -l x 

1 

:< I(- 2 g + -g -- 4 g ($ - &)“’ (! - -!J]-’ for u >, Ct_l z 

w2 (u) = 0 (u < c2-b4 

Figures la and 2a show the vertical velocity du/dt at an arbitrary point A (y = 0, 

x > O), as a function of time, when the load is moving with a velocity below and above 

the Rayleigh velocity, respectively. 

du/dt 

a 

FIG. 1 

b 

From the time of arrival at point A of the longitudinal wave front, t, = cl-lz the 

velocity begins to increase. Also, for a velocity below Rayleigh’s (Fig. la), a positive 

infinite velocity is caused by the surface wave, at tR = VR-lT, originating at the 

instant the load is applied at its front end. A negative infinite velocity will occur later 



616 K. V. Gol’dshtein 

at point A, at the instant the front end of the loading arrives (to =m= I ‘-I_,~). 

For a velocity above Rayleigh’s the picture is reversed (Fig. 2~) : here the positive 

infinite velocity is connected with the arrival of the front end of the loading, and the neg- 

ative infinite velocity with the arrival of the surface wave. 

Let us further explain the difference between the cases of velocities below and above 

the Rayleigh value. In the present problem, the instant of load application is characterized 

by the fact that, at that instant there is suddenly an infinite load applied to the body, while 

at subsequent instants there are only small load additions. The motion of the medium can 

be regarded as a result of the interaction of disturbances which arise as theload is ap- 

plied to the segment (- bo, 0) of the x-axis and at subsequent times at the moving front 

end of the load. 

At the initial instant, the particles of the medium situated on the surface near the 

front end of the load, directly ahead of it, acquire a positive infinite vertical velocity 

(do/dt). Similarly, the particles directly behind the front end of the load acquire a neg- 

ative infinite velocity. Figure 3 shows an example of the velocity distribution in the 

vicinity of the front end of the load, at a time close to the initial one. Roth the positive 

a 
FIG. 2 

infinite discontinaity (part 1) of the initial distribution (Fig. 3) and the negative one 

(part 2) will be carried along the surface wave, which arises at the front end of the load 

at the instant it is applied. Parts (1) and (2) are situated on opposite sides of the front 

end of the loading (Fig. 3). They therefore interact in a different manner, for the two cases 

of lower and higher velocities than Rayleigh’s, with the disturbances generated by the 

front end of the load, aa a result of its motion. 

Part (1) is situated before the load. For the case of velocities lower than Rayleigh’s, 

according to (3.11, later disturbances do not change its form and velocity of propagation. 

The surface wave overtakes the front end of the load and brings to point A the correspoud- 

ing positive infinite discontinuity of the particle vertical velocity (Fig. la). Part (2). for 

velocities lower than Rayleigh’s, meets the front end of the load and interacts with it. The 

result of this interaction is, that the front end of the load, when it reaches point A, brings 
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FIG. 3 

a change in velocity of the same nature as part (2) of the 

initial distribution. 

For the case of velocities above Rayleigh’s, on the 

other hand, the front end of the load overtakes part (1) of 

the initial distribution. This leads to a superposition of 

disturbances, such that, as can be seen from (3.1), the 

arrival of the front end of the load at any point of the sur- 

face will be associated with a positive infinite disconti- 

nuity of particle velocity (Fig. 20). The surface wave, 

however, lags behind the front end of the load and brings 

the negative infinite discontinuity of velocity, correspond- 

ing to part (2) of the initial distribution. 

At an arbitrary point A of the surface, the vertical velocity as t + oa tends to a const- 

ant negative value. Actually, using known properties of Laplace transforms, we have, 

according to (1.2). (1.4) and (1.12) 

The function under the integral dies out at infinity as (-2, i.e., the integral converges 

and is positive since the function under the integral is positive. 

The displacement o at any point of the surface dies out to ( - m) as t + m, independent 

of the load velocity. 

In contrast, as can be seen from the above investigation of velocity behavior, the 

change of displacement at the surface point at the instant the front end of the load and 

the surface wave arrive depends on the load velocity. 

For the case of velocities below Rayleigh’s, the displacement at point A increases at 

the instant the surface wave arrives and decreases when the front end of the load arrives. 

For the case of velocities above Rayleigh’s, the discontinuity in the vertical velocity, 

brought about by the front end of the load, corresponds to an increase of displacement at 

point A, while the discontinuity brought about by the surface wave corresponds to a de- 

crease. 

Knowing the vertical velocity (du/dt) as a function of time (Fig. la and 2a), and, conse- 

quently, also the displacement v at any point of the sarface, we can construct the distribu- 

tion of vertical displacements along the surface at any given time. 

Figure lb shows the shape of the half-plane surface at some given time, for a velocity 
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below Rayleigh’s. The analogous curve, for a velocity above Hayleigh’s, is shown II, 

Fig. 2t. 

To obtain the stationary solution, we must investigate the motion in the vicinity of the 

front end of the load for large values of time. The larger the time selected, the larger the 

distance between the points on the surface at which, at that time, we find the front end of 

the load and the surface wave. In the limit, as t + bo, this distance becomes infinite. 

Thus, for a velocity below Rayleigh’s (Fig. lb), the material within an arbitrary 

neighborhood of the front end of the load will be compressed under the load and will swell 

in front of it. For a velocity.above Rayleigh’s, we have swelling under the load and a de- 

pression in front of it. These results are in full agreement with those obtained from the 

stationary solution. 

The lift udder a compressive load near its front end, (Fig. 26). for a velocity above 

hayleigh’s, is not connected with the fact that the load is distributed on a semi-infinite 

interval. If the moving load, with a velocity above Rayleigh’s, is applied to a finite length 

1, its front end will also be lifted relative to the material ahead of the load. Actually, the 

shape of the surface in this problem is obtained by subtracting from the curve of Fig. 26 

a similar curve, but moved to the left a distance 1. From Fig. 26 we can see that the dis- 

placement v increases monotonically over the interval (m, x,,J. Here zmt is the coordinate 

of the surface point at which the displacement is a maximum at the particular time. There- 

fore, after the motion to the left and subtraction, the displacements v in the above interval 

will still increase monotonically. For velocities above Rayleigh’s, rmt < Vt and, therefore, 

the front end of the ‘finite’ load is lifted relative to the material ahead of the load. 

Normally, qualitative singularities in stationary problems arise when, in passing 

through some critical velocity, the type of equation is changed (for example, in passing 

through the velocity of sound in gas dynamics), 

The difference in the investigated resonance phenomena of stationary contact problems 

with dies or loads moving at Rayleigh’s velocity is that they are not connected with 

changes in the type of equations. These phenomena are caused by boundary conditions : 

the presence of the free boundary and the appearance of another type of wave, the surface 

waves. The presence of a free boundary or a surface of separation, along which surface 

waves can propagate, leads to resonance phenomena in other media also. These effects 

appear with the motion of the source of disturbance with velocities close to those of sur- 

face waves in the given medium. Note that [II] d ea s with the resonance mechanism of 1 

excitation of gravity waves on the surface of a heavy liquid by a turbulent wind. In this 

case because of dispersion there is not one critical velocity, as in the cabe of an isotropic 

homogeneous elastic body, but a spectrum of critical velocities. 

It can be expected, that similar phenomena occur in the theory of Cherenkov radiation 

when a charge moves along a surface of separation between two dielectrics with different 

dielectric properties. 
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